SYLLABUS (PART B) – CHEMICAL

1. Regulatory Practice

- i. Environment Quality Act 1974 (Act No. 127)
 - a. Waste water treatment unit operation
 - Grit Chamber
 - Equalisation tank
 - Coagulation and flocculation tank
 - Dissolve air flotation
 - Clarifier
 - Aeration tank
 - Sequential batch reactor
 - Sand filter
 - Activated carbon filter
 - Sludge dewatering units
 - Sludge thickening tank
 - Sludge holding tank
 - Membrane filters
 - Ozoniser and etc.
 - b. Design of waste water treatment process
 - Primary treatment
 - Secondary treatment
 - Tertiary treatment
 - c. Crude palm oil regulations and order 1977
 - d. Raw natural rubber regulations and order 1978
 - e. Environmental Impact Assessment) Order 1987
 - f. Scheduled Wastes Treatment And Disposal Facilities regulations and order 1989
 - g. Prohibition On The Use Of Cfcs And Other Gases As Propellants And Blowing Agents Order 1993
 - h. Prohibition On The Use Of Controlled Substance In Soap, Synthetic Detergent And Other Cleaning Agents Order 1995
 - i. Refrigerant Management Regulations 1999
 - j. Halon Management Regulations 1999
 - k. Dioxin And Furan Regulations 2004

- I. Scheduled Wastes Regulations 2005
- m. Sewage Regulations 2009
- n. Control Of Pollution From Solid Waste Transfer Station And Landfill Regulations 2009
- o. Industrial Effluent Regulations 2009
- ii. Occupational Safety and Health Act 1994 (Act No. 514)
 - a. Local ventilation system
 - Layout and diagram
 - Hood
 - Exhaust fan
 - Air cleaner
 - Ducting
 - b. Design of local ventilation system
 - Pressure drop
 - Fan / Exhaust fan pressure, exhaust air volume, fan motor
 - Hood controlled air velocity, exhaust air volume
 - Dust collector capacity
 - Exhaust gas disposal system
 - c. Control of Major Accident Hazards
 - d. Classification, labelling and safety datasheet of hazardous chemicals
 - e. Prohibition of use of substance
 - f. Occupational health and safety management systems OSHAS 18001:2007
 - g. Malaysian Guidelines for the Formulation of a Chemical Safety Datasheet 1997
 - h. Malaysian Guidelines for the Classification of Hazardous Chemicals 1997
 - i. Malaysian Guidelines for Labelling of Hazardous Chemicals 1997
 - j. Malaysian Guidelines for the Preparation of a Chemical Register 2000
 - k. Malaysian Guidelines on the Control of Chemicals Hazardous to Health 2001
 - I. Malaysian Guidelines for HS (Environmentally Hazardous Substance) Notification & Registration
- iii. Food Act 1983 (Act 281)
 - a. Food Regulations 1985
 - b. Food Hygiene Regulations 2009
 - c. Food Irradiation Regulations 2011

- iv. Pesticides Act 1974 (Act 149)
 - a. Highly toxic pesticides regulations 1996
 - b. Labelling regulations 1984
 - c. Licensing for manufacturing rule 2011
 - d. MS 409:2012 packaging and storage of pesticides code of practice
- v. Factories and Machinery Act 1967 (Revised 1974) (Act 139)
 - a. Steam Boiler and Unfired Pressure Vessel Regulations 1970
 - b. Fencing of Machinery and Safety Regulations 1970
 - c. Safety, Health and Welfare Regulations 1970
 - d. Notification, Certificate of Fitness and Inspection Regulations 1970
 - e. Lead Regulations 1984
 - f. Asbestos Regulations 1984
 - g. Noise Exposure Regulations 1989
 - h. Mineral Dust Regulations 1989
 - i. MS ISO 14159:2005 (confirmed:2011) safety of machinery hygiene requirements for the design of machinery
 - j. MS ISO 12100:2011 Safety of machinery general principles for design risk assessment and risk reduction
- vi. Petroleum (Safety Measures) Act 1984 (Act 302)
 - a. Transportation Of Petroleum By Water Regulations 1985
 - b. Transportation Of Petroleum By Pipelines Regulations 1985
- vii. Biosafety Act 2007 (Act 678)
 - a. Risk assessment
 - (b) Risk management
 - (c) Emergency response plan
 - (d) Labelling

2. Plant Operation

- i. Process safety
 - a. Process safety management OSHA 3132
 - b. Management of change
- ii. Loss Prevention and layer of protection
 - a. Layer of protection analysis (LOPA)
 - b. Safety integrity level (SIL)

iii. Risk assessment

- a. Hazard Identification
- Process hazards
- Operational hazards
- Environmental hazards noise, dust, etc.
- b. Risk Analysis of operations
- Consequence & Probability analysis of failures
- c. Risk reduction
- Minimise, substitute, simplify, moderate
- d. Residual Risk management
 - Critical system operating procedures
 - Safeguarding systems alarms, trips & shutdowns
- Emergency management when failures occur
- e. Quantitative & Qualitative Risk Assessment (QRA)
- f. Health Risk assessment (HRA)
- g. Environmental Risk Assessment (ERA)
- iv. Fire and explosion
 - a. NFPA 654 standard for the prevention of fire and dust explosions from the Manufacturing, Processing, and Handling of Combustible Particulate Solids
 - b. MS 1745:2004 fire detection and fire alarm systems
 - v. Toxicity
 - vi. Hazard analysis

a. HAZOP

- Understanding HAZOP process
- Continuous operations HAZOP
- Sequential Operations HAZOP / Procedural HAZOP
- Computerised Process System HAZOP
- b. Process hazard analysis NFPA 654
- c. IChemE Guide on HAZOP
- vii. Process control
 - a. Process control diagram
 - b. Relief design
- viii. Process design

- a. Hydraulic design
- b. Piping API 14E

3. Professional Drawing

- i. Process flow diagram (PFD) and Utility flow diagram (UFD)
 - a. Ability to describe a PFD or UFD example
- ii. Process & Instrumentation diagram (P&ID)
 - a. Ability to describe a P&ID example

4. Handling of Materials

- i. Handling of liquid
 - a. Common types of liquid behaviour
 - b. Tank discharge
- ii. Gas processing
 - a. MS 830:2003 code of practice for the storage, handling and transportation of liquefied petroleum gases
 - b. MS 930:2010 code of practice for the installation of fuel gas piping systems and appliances
- iii. Handling of particulate solids
 - a. Storage and flow of particulate solids in silos

5. Unit Operation

- i. Reaction
 - a. Reactor sizing
 - b. Types of reactor
- ii. Separation and purification
 - a. Distillation
 - b. Absorption and adsorption
 - c. Membrane separation
 - d. Extraction
 - e. Evaporation
 - f. Drying
 - g. Filtration, sedimentation and centrifugal separation
- iii. Equipment

- a. Pump
 - Examples of different types of pumps and their applications
- Hydraulic calculation and system curve
- b. Compressor
- c. Turbine
- d. Storage tank
- API 650
- iv. Pressure vessel
 - a. Design of pressure vessel
 - ASME code & local authority inspection requirements
 - Types of vessels
 - Materials of construction
 - Pressure / temperature limitations
 - Types of fluids in the process
 - Vessel insulation
 - b. Pressure relief
 - c. Types of Pressure Safety Valves for different fluids & process conditions
 - Bursting Discs
 - Blowdown systems
- v. Refrigeration and heat pump
- vi. Water supply treatment and distribution

6. Chemical Engineering Principles

- i. Thermodynamics
- ii. Heat and mass transfer
- iii. Energy and material balances
- iv. Fluid mechanics and fluid dynamics
- v. Ventilation and humidification
- vi. Psychrometrics

7. Role of Chemical Engineer in Society

- i. Environmental impact and sustainability
 - a. Environmental impact assessment
 - Life cycle analysis

- b. Risk assessment
- c. Discharge and disposal
- d. Waste management
- ii. Green technology
 - a. Example of green technology and practices
 - b. Recent development in the industry
 - Example: turning sewage effluent into grey water, recover household sewage as grey water
 - Example: turning EFB into syn gas and etc.
- iii. Code of Practice
 - a. Engineer's responsibility to society and to the public
 - b. Professionalism on a conceptual basis
 - c. Ethical conduct and professional practice
 - d. IChemE forms of contract
 - e. BP Process Safety Series including what went wrong
- iv. Continual professional development (CPD)
- a. Aware of the recent technological development in the area of services
 - BEM magazine
 - New advancement